

Absolute Maximum Ratings(Note 2)

 (Note 3)| Supply Voltage (VD $)$ | -0.5 to $+18 \mathrm{~V}_{\mathrm{DC}}$ |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$ |
| Storage Temperature Range ($\left.\mathrm{T}_{\mathrm{S}}\right)$ | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Power Dissipation (P_{D}) | |
| \quad Dual-In-Line | 700 mW |
| \quad Small Outline | 500 mW |
| Lead Temperature (T_{L}) | |
| \quad (Soldering, 10 seconds) | $260^{\circ} \mathrm{C}$ |

Recommended Operating Conditions (Note 3)

$$
\begin{array}{lr}
\text { DC Supply Voltage }\left(\mathrm{V}_{\mathrm{DD}}\right) & +3.0 \text { to }+15 \mathrm{~V}_{\mathrm{DC}} \\
\text { Input Voltage }\left(\mathrm{V}_{\mathrm{IN}}\right) & 0 \text { to } \mathrm{V}_{\mathrm{DD}} \mathrm{~V}_{\mathrm{DC}} \\
\text { Operating Temperature Range }\left(\mathrm{T}_{\mathrm{A}}\right) & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{array}
$$

satety: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 3: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			${ }^{85}{ }^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \quad\|\mathrm{O}\| \leq 1.0 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} & \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$\overline{\mathrm{V} \text { OH }}$	HIGH Level Output Voltage	$\begin{array}{ll} \hline V_{D D}=5.0 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} & \|\mathrm{O}\| \leq 1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} & \\ \hline \end{array}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.0 \\ 10.0 \\ 15.0 \\ \hline \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\overline{\mathrm{V}_{1 \mathrm{H}}}$	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$			$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\overline{\mathrm{V}}$
${ }^{\text {OL }}$	LOW Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \end{gathered}$		$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{I}}$	HIGH Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.52 \\ -1.3 \\ -3.6 \end{gathered}$		$\begin{aligned} & \hline-0.44 \\ & -1.1 \\ & -3.0 \end{aligned}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{aligned} & \hline-0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{IN}}$	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline-0.3 \\ 0.3 \end{gathered}$			$\begin{gathered} \hline-0.3 \\ 0.3 \end{gathered}$		$\begin{array}{r} \hline-1.0 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\overline{\mathrm{I}} \mathrm{OZ}$	3-STATE Output Leakage Current	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 15 V		1			1		10	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 5)$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\overline{t_{\text {PHL }}, t_{\text {PLH }}}$	Propagation Delay Clock to Q_{S}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 300 \\ 125 \\ 95 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 600 \\ & 250 \\ & 190 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {tPHL }}$ t PLLH	Propagation Delay Clock to $Q_{\text {I }}^{\prime}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} \hline 230 \\ 110 \\ 75 \end{gathered}$	$\begin{aligned} & \hline 460 \\ & 220 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tehL $^{\text {t } \text { PLL } \text { (}}$	Propagation Delay Clock to Parallel Out	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 420 \\ & 195 \\ & 135 \\ & \hline \end{aligned}$	$\begin{aligned} & 840 \\ & 390 \\ & 270 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
	Propagation Delay Strobe to Parallel Out	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 290 \\ & 145 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 580 \\ & 290 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHZ }}$	Propagation Delay HIGH Level to HIGH Impedance	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PLZ }}$	Propagation Delay LOW Level to HIGH Impedance	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Propagation Delay HIGH Impedance to HIGH Level	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {t }}$	Propagation Delay HIGH Impedance to LOW Level	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 140 \\ 75 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 280 \\ & 150 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$	Transition Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 200 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {SU }}$	Set-Up Time Data to Clock	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 40 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 10 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Clock Rise and Fall Time	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	1			$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \\ & \mathrm{~ms} \end{aligned}$
$\mathrm{t}_{\text {PC }}$	Minimum Clock Pulse Width	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 83 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 100 \\ 50 \\ 40 \\ \hline \end{array}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PS }}$	Minimum Strobe Pulse Width	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 200 \\ 80 \\ 70 \\ \hline \end{array}$	$\begin{array}{r} \hline 100 \\ 40 \\ 35 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
${ }_{\text {fax }}$	Maximum Clock Frequency	$\begin{aligned} & \hline V_{D D}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input		5.0	7.5	pF
Note 5: AC Parameters are guaranteed by DC correlated testing.						

Timing Diagram

Test Circuits and Timing Diagrams for 3-STATE

Fairchild does not assume ary responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and specifications.

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

