BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals CMOS MSI (Low-Power Complementary MOS)

The MC14544B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. The Ripple Blanking Input (RBI) and the Ripple Blanking Output (RBO) can be used to suppress either leading or trailing zeroes.

For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range $=3.0 \mathrm{~V}$ to 18 V
- Capability for Suppression of Non-significant zero
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages referenced to $\mathrm{V}_{\text {SS }}$)

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to +18	V
Input Voltage, All Inputs	$\mathrm{V}_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
DC Input Current per Pin	$\mathrm{I}_{\text {in }}$	± 10	mAdc
Operating Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation, per Packaget \dagger	P_{D}	500	mW
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Continuous Output Drive Current (Source or Sink) per Output	IOHmax $I_{\text {OLmax }}$	10	mAdc
Maximum Continuous Output Power* (Source or Sink) per Output	PoHmax Polmax	70	mW

* $\mathrm{POHmax}=\mathrm{I}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{DD}}\right)$ and $\mathrm{POLmax}=\mathrm{I}_{\mathrm{OL}}\left(\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{SS}}\right)$
* Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
Ceramic "L" Packages: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

MC14544B

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or $\left.V_{D D}\right)$. Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	VDD Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D}$ or 0 "1" Level $V_{\text {in }}=0$ or $V_{D D}$	V OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \text { Input Voltage \# "0" Level } \\ & \begin{array}{l} \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ \\ \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array} \end{aligned}$	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
$\begin{array}{ll} \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ (\mathrm{V} \mathrm{OH}=4.6 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OH}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -10.1 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ - \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{aligned} & (\mathrm{VOL}=0.4 \mathrm{Vdc}) \\ & (\mathrm{VOL}=0.5 \mathrm{Vdc}) \\ & (\mathrm{VOL}=9.5 \mathrm{Vdc}) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{\text {IOL}}$	$\begin{gathered} 5.0 \\ 10 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ \hline 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ - \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 10.1 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ \hline 2.4 \end{gathered}$	-	mAdc
Input Current	1 in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
$\begin{aligned} & \text { Quiescent Current } \\ & \text { (Per Package) } V_{\text {in }}=0 \text { or } V_{D D} \text {, } \\ & \text { I out }=0 \mu \mathrm{~A} \end{aligned}$	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current ${ }^{* *} \dagger$ (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & I T= \\ & I T= \\ & T= \\ & T= \end{aligned}$	$.6 \mu \mathrm{~A} / \mathrm{kHz})$ $.1 \mu \mathrm{~A} / \mathrm{kHz})$ $.7 \mu \mathrm{~A} / \mathrm{kHz})$	$\begin{aligned} & \text { IDD } \\ & \text { IDD } \\ & \text { IDD } \end{aligned}$			$\mu \mathrm{Adc}$

\#Noise immunity specified for worst-case input combination.
Noise Margin for both "1" and " 0 " level $=1.0 \mathrm{~V}$ min @ $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

$$
\begin{aligned}
& 2.0 \mathrm{~V} \min @ \mathrm{~V} D=10 \mathrm{~V} \\
& 2.5 \mathrm{~V} \min @ \mathrm{~V} D=15 \mathrm{~V}
\end{aligned}
$$

\dagger To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+3.5 \times 10^{-3}\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{V}_{\mathrm{DD}} \mathrm{f}^{f}
$$

where: I_{\top} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ in V , and f in kHz is input frequency.

* The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)

Characteristic	Symbol	VDD	Min	Typ	Max	Unit
Output Rise Time $\begin{aligned} & \mathrm{t} T \mathrm{LH}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}+\mathrm{LLH}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{t}+\mathrm{L} L \mathrm{H}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	t'LH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Output Fall Time $\begin{aligned} & \mathrm{t} \mathrm{THL}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t} \mathrm{THL}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t} \mathrm{~T} H \mathrm{HL}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
	tPLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 605 \\ & 250 \\ & 185 \end{aligned}$	$\begin{gathered} 1210 \\ 500 \\ 370 \end{gathered}$	ns
Turn-On Delay Time $\begin{aligned} & \mathrm{tpHL}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+420 \mathrm{~ns} \\ & \mathrm{tPHL}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+172 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+130 \mathrm{~ns} \end{aligned}$	tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 505 \\ & 205 \\ & 155 \end{aligned}$	$\begin{aligned} & 1650 \\ & 660 \\ & 495 \end{aligned}$	ns
Setup Time	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	0 0 0	$\begin{aligned} & -40 \\ & -15 \\ & -10 \end{aligned}$	-	ns
Hold Time	th	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 15 \\ & 10 \end{aligned}$	-	ns
Latch Disable Pulse Width (Strobing Data)	tWH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 250 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 125 \\ & 50 \\ & 40 \end{aligned}$	-	ns

*The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

CONNECTIONS TO VARIOUS DISPLAY READOUTS

LIQUID CRYSTAL (LC) READOUT

INCANDESCENT READOUT

GAS DISCHARGE READOUT

NOTE: Bipolar transistors may be added for gain (for $V_{D D} \leq 10 \mathrm{~V}$ or $\mathrm{I}_{\text {out }} \geq 10 \mathrm{~mA}$).

X = Don't Care
\dagger Above Combinations
*For liquid crystal readouts, apply a square wave to Ph. For common cathode LED readouts, select $\mathrm{Ph}=0$. For common anode LED readouts, select $\mathrm{Ph}=1$.
** Depends upon the BCD Code previously applied when LD $=1$.
$\# \mathrm{RBO}=\mathrm{RBI} \cdot(\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}})$

Figure 1. Typical Output Source Characteristics

Figure 2. Typical Output Sink Characteristics
(a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high.

(b) Inputs D, Ph, and BI low, and Inputs A and B high.

(c) Data DCBA strobed into latches

Figure 4. Dynamic Signal Waveforms

LEADING EDGE ZERO SUPPRESSION

TRAILING EDGE ZERO SUPPRESSION

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , ds are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

