
8-bit
Microcontroller

Application
Note

Rev. 1483B–AVR–05/02
AVR030: Getting Started with C for AVR

Features
• How to Open a New Project
• Description of Option Settings
• Linker Command File Examples
• Writing and Compiling the C Code
• How to Load the Executable File Into the STK200 Starter Kit

Introduction
The purpose of this application note is to guide new users through the initial settings
of the Embedded Workbench from IAR and compile a simple C program. The applica-
tion note shows how to set up the compiler to generate an executable hex file and how
to download this file into the device. The example described in this application note is
written for the AT90S2313 using the STK200 starter kit or alternatively an emulator.

Preparations
The IAR compiler is shipped with a hardware lock dongle. This dongle must be con-
nected to the parallel port. Before the dongle can be used, a Windows® driver must be
installed. Please see the instructions included with the dongle for how to install the
Windows driver.

Creating a New Project
When the preparations are ready, open the IAR Embedded Workbench. To create a
new project, go to the “File” menu and select “New” and then “Project”. The dialog box
shown in Figure 1 appears. In this dialog box, first make a folder “C:\AVR030” and
then type “Getting Started” in the “File name” window. This project should be created
in the in the “C:\AVR030” folder.
1



Figure 1. Create the Project File

Settings in “Project->
Options”

Before any code can be compiled and linked, the options for the compiler and linker
must be set up correctly. By default, it is possible to select two different targets in the
project window. The two selections are target “Release”, and target “Debug”. The
Debug target is normally used when running the code in a simulator or emulator, while
the Release target is normally used when producing a code that can be executed in a
real device. The settings done in the “Project->Options” menu are individual for both tar-
gets. Thus, it is necessary to set all options twice when using both targets. The main
difference between the two targets is the format of the output file.

It is also possible to add more targets which options can be customized to a specific
AVR (simulated, emulated or the real device). Common and different source files may
be included in the different targets. A folder will be created for each target when linked
for the first time.

In this application note, the goal is to make a file that can run in the AT90S2313 device.
To do this, the Release target will be used. Select the “Release” target in the “Getting
started.prj” window as shown in Figure 2. Then select the “Project->Options” menu. The
window shown in Figure 3 will pop up.

Figure 2. Selecting Target Release
2 AVR030
1483B–AVR–05/02



AVR030
General Settings In the “General” category in the “Options” dialog box, the type of processor used is
selected. It is necessary to change two settings,”Processor Configuration” and “Memory
Model”. Please refer to Table 1 for the correct selection for these choices for different
AVR microcontrollers.

“Memory model tiny” uses a one byte data pointer, thus allowing a maximum of 256
bytes data. “Memory model small” uses a two byte data pointer, thus allowing up to 64
Kilobytes data. For the -v0 and -v2 “Processor Configuration only the Memory model
tiny” may be used.

In our example, the factory settings should be used, as shown in Table 3.

Figure 3. General Options Dialog
3
1483B–AVR–05/02



ICCA90 Settings To get the dialog options for the specific settings of the Compiler, click on the “ICCA90”
line in the “Category” tab.

When using the memory model tiny, the factory settings are OK.

If the memory model small is selected, it is necessary to check the “Writable strings,
constants” checkbox. If this is not done, variables defined as const will not be compiled
correctly. Figure 4 describes the settings when the memory model small is selected.

The compiler may be optimized for code size or execution speed. The type and level of
optimization may be set in the “Optimization” group in Figure 4. Only one type of optimi-
zation may be specified for a single target. Note that if a high level of optimization is
used, the user may not be able to debug the code. The code will be fully debuggable
with optimization level 3 (default for both types of optimization) or lower.

Also note that it is strongly recommended that the “Embed source” code checkbox in the
“Debug” tab is checked if a debugging target, i.e. simulation or emulation, is used. This
will let you debug on the assembly level rather than on the C language level. In AVR
Studio you will also be able to see exactly which assembly code is generated for the
individual C statements.

On the “List” tab, the user is able to determine whether a listing is generated, and the
information included in this listing. The “Insert mnemonics” option will, if checked, cause
the compiler to include the generated assembly lines in the listing.

Table 1. Device Specific Settings

AVR Device Processor Configuration Memory Model XCL file

AT90S2313 V0 (maximum 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S2323 V0 (max 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S2333 V0 (max 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S2343 V0 (max 256 byte data, 8K code) Tiny 2F128S.xcl

AT90S4414 V1 (max 64 Kbyte data, 8K code) Small 4F256S.xcl
4F64KS.xcl

AT90S4433 V0 (max 256 byte data, 8K code) Tiny 4F128S.xcl

AT90S4434 V1 (max 64K byte data, 8K code) Small 4F256S.xcl

AT90S8515 V1 (max 64K ‘byte data, 8K code) Small 8F512S.xcl
8F64KS.xcl

AT90S8534 V1 (max 64K byte data, 8K code) Small 8K256S.xcl

AT90S8535 V1 (max 64K byte data, 8K code) Small 8F512S.xcl

ATmega103 V3 (max 64K byte data, 128K code) Small 128F4KS.xcl
128F64KS.xcl

ATmega161 V3 (max 64K byte data, 128K code) Small 16F1KS.xcl
16F64KS.xcl

ATmega603 V3 (max 64K byte data, 128K code) Small 64F4KS.xcl
64F64KS.xcl
4 AVR030
1483B–AVR–05/02



AVR030
Figure 4. ICCA90 Option Settings

AA90 Settings In the AA90 settings, the options for the assembler can be changed. Since this applica-
tion note does not contain any parts written in assembly, the default settings can be left
unchanged.

XLINK Settings The linker settings gives the linker instructions for how to link together the object codes
from the different Compiler, Assembler and Library modules.

The first thing that needs to be selected is the format of the output-file the linker is to cre-
ate. In this application note, the intention is to generate an “Intel Extended HEX” file
which is recognized by the STK200 starter kit.

This is done by selecting the “Output” tab of the “XLINK” options, and click “Other” in the
format session. Select “Intel-extended” from the output format pull-down menu as
shown in Figure 5. When a debugging target is used, it is normal to select either “Debug
info” or “Debug info with terminal I/O”. “Debug info with terminal I/O” should be used
when simulating or emulating in AVR Studio®.

In the “Output” file group it is possible to rename the output-file. The default name is the
same as the project name.

The other thing that has to be changed is the “Linker Command File” used. To change
this, click the “Include” tab, and in the “XCL file name” bar, click “Override Default” as
shown in Figure 6. Then click the “...” button, and navigate to the “2F128S.xcl” file
attached to this application note. Here, it is assumed that the file is stored in the
“C:\AVR030” folder. If other devices than the AT90S2313 are used, select the corre-
sponding “XCL” file from Table 1. For the devices in Table 1 with possibility to have
external RAM, there are listed two possible “XCL” files in Table 1. One when using inter-
nal RAM only, and one when using external RAM.
5
1483B–AVR–05/02



Figure 5. Selecting Output Format

Figure 6. Selecting the XCL File
6 AVR030
1483B–AVR–05/02



AVR030
The main purpose of the Linker Command File is to define the code and data segments,
which is done in the -Z command. Note that the size of the Data Stack and the Return
Stack is specified explicitly and may be changed according to a specific project. The
“Linker Command File” will probably need to be edited for each project. “The Linker
Command Files” attached to this application note must be considered as a starting point
only. Please see the application note AVR032: Linker Command Files for the IAR
ICCA90 Compiler for how to modify the Linker Command File to fit the specific project.

Writing the Source File When the “Project” options are properly configured, the next step is to write the source
code. This application note uses a simple program that increments PORTB on which the
eight LEDs are attached. An 8-bit timer is used to generate a delay between incremen-
tations, making it possible to see the LEDs flashing.

To open a new source file, select “File->New” and then select “Source/Text”. In the new
window that appears, type in the text below, and save it as “AVR030.C” by selecting
“Save As” in the “File” menu. Make sure to save the file in the “C:\AVR030” folder.

Program Listing for
AT90S2313 #include <io2313.h>

void initialization(void);

void delay(void);

void initialization(void)

{

DDRB = 0xff; // Set PORTB as output

TCCR0 = 0x05; // Count clock/1024.

}

void delay(void) //Producing a delay of 65 ms at 4 MHz

{

while (!(TIFR&0x02)); // Waiting for timer0 overflow flag to be set

TIFR = 0x02; // Clearing overflow flag

}

void main (void)

{

initialization(); //Initialize Pheripherals

while (1) //Forever

{

PORTB++; //Increment PORTB

delay(); //Short delay

}

}

The program is divided into three parts; Initialization, delay and main-loop. In the initial-
ization part, PORTB is set as output, and TIMER0 starts to count the main clock divided
by 1024.
7
1483B–AVR–05/02



In the delay subroutine, the controller waits for the TIMER0 overflow flag to be set, then
clears the flag and exits.

In the main-loop, the content in PORTB is incremented, and a delay is called to make
the change on PORTB visible.

Including the Source
File in the Project

When the source code is written, it has to be included in the project. This is done by
selecting “Files” from the “Project” menu. The dialog box shown in Figure 7 appears.
Navigate to the “C:\AVR030” folder, select the file “AVR030.C” by clicking on it, and
select “Add”. Click “Done” to exit the dialog box.

Figure 7. Selecting Source-files

Compiling the Code To compile the code, select “Project -> Make” or press “F9”. If everything is done cor-
rectly, the code compiles and links with no errors, and an executable HEX code is
placed in the file “C:\AVR030\RELEASE\EXE\GETTING STARTED.A90”.
8 AVR030
1483B–AVR–05/02



AVR030
Loading the File Into
the STK200 Starter
Kit

To run the code, the file has to be programmed into an AT90S2313. This application
note describes how to load it to an AT90S2313 in the STK200 starter kit.

The software used by the STK200 is called AVR ISP. The STK200 dongle must be
mounted on the parallel port. When this is done, a new project can be opened.

A new project is opened by selecting “Project->New Project” in AVR ISP. Highlight the
AT90S2313 from the device selection menu and click “OK”.

In the “Project Manager” window information about the project can be typed in, and fuse
and lock-bit options can be set. This is not necessary for this project.

The next step is to load the hex-file into the “Program Memory” window. To do this, acti-
vate this window by clicking on the title frame of the window. Now go to the “File” menu
a nd se l ec t “L oad ” . I n th e d ia lo g b ox th a t a ppe ars , n av i ga te to th e
“AVR030\RELEASE\EXE” folder, and select the “Getting Started.a90” file.

To load the program into the AT90S2313 on the starter kit, select the “Program->Auto-
Program” option. In the “Auto-Program” dialog box, tag “Reload Files”, Erase device and
Program device. Now click “OK”, and the LEDs on the starter kit should be counting.

Short Reference

Preparations • Install dongle driver

• Create destination folder

Getting Started 1. File->New->Project

2. Project name and path

3. Highlight release folder in project window

4. Project->Options

5. In the General options, select Processor Configuration and Memory Model
according to Table 1

6. In the ICCA90 options, tag “Writable strings, constants” if the Memory Model is
small, leave unchanged if Memory Model is tiny

7. In the XLINK options, select output format “Intel Extended”

8. In the include-tab of the XLINK options, go to the “XCL file name” bar and select
“Override default”. Select the XCL-file corresponding to your device from Table 1

9. Write the source code

10. Add the Source file to the project by selecting “Project->files” and select the file
just written

11. Compile by selecting “Project->make” or by pressing “F9”

12. Open AVR ISP and download the hex-file located in the “avr030\release\exe”
folder into the device
9
1483B–AVR–05/02



Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1483B–AVR–05/02 0M

ATMEL®, AVR®, and AVR Studio® are the registered trademarks of Atmel.

Windows® are the registered trademark of Microsoft Corporation.

Other terms and product names may be the trademarks of others.


	Features
	Introduction
	Preparations
	Creating a New Project
	Settings in “Project-> Options”
	General Settings
	ICCA90 Settings
	AA90 Settings
	XLINK Settings
	Writing the Source File
	Program Listing for AT90S2313

	Including the Source File in the Project
	Compiling the Code
	Loading the File Into the STK200 Starter Kit
	Short Reference
	Preparations
	Getting Started


