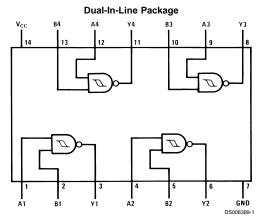


DM74LS132


Quad 2-Input NAND Gates with Schmitt Trigger Inputs

General Description

which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

This device contains four independent gates each of which performs the logic NAND function. Each input has hysteresis

Connection Diagram

Order Number DM54LS132J, DM54LS132W, DM74LS132M or DM74LS132N See Package Number J14A, M14A, N14A or W14B

Function Table

 $Y = \overline{AB}$

Inp	Output		
Α	В	Y	
L	L	Н	
L	Н	Н	
Н	L	Н	
Н	Н	L	

H = High Logic Level L = Low Logic Level **Absolute Maximum Ratings** (Note 1)

Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

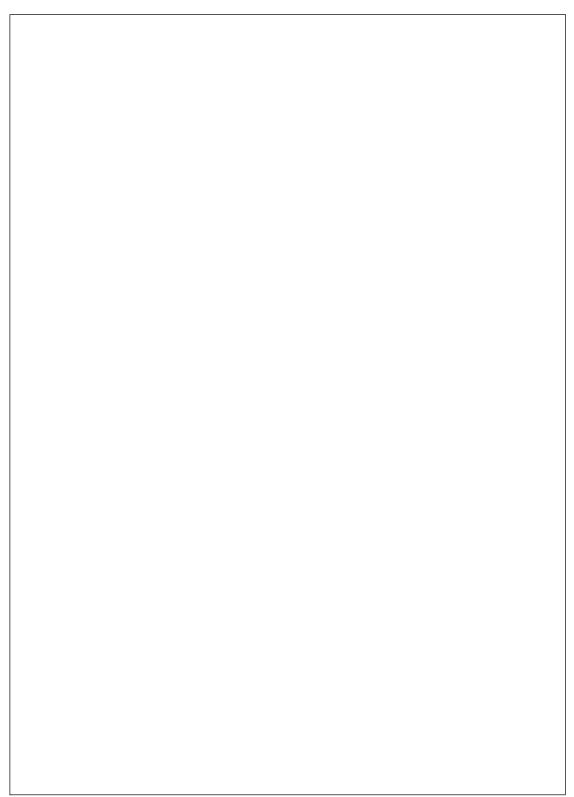
Symbol	Parameter	DM54LS132			DM74LS132			Units
		Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{T+}	Positive-Going Input	1.4	1.6	1.9	1.4	1.6	1.9	V
	Threshold Voltage (Note 2)							
V _{T-}	Negative-Going Input	0.5	0.8	1	0.5	0.8	1	V
	Threshold Voltage (Note 2)							
HYS	Input Hysteresis (Note 2)	0.4	0.8		0.4	0.8		V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

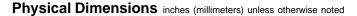
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

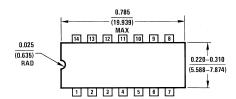
Electrical Characteristics

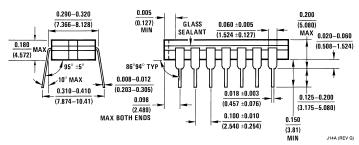
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 3)		
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	$V_I = V_{T} Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	$V_I = V_{T+} Max$	DM74		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4	
I _{T+}	Input Current at	V_{CC} = 5V, V_{I} = V_{T+}	•		-0.14		mA
	Positive-Going Threshold						
I _{T-}	Input Current at	V_{CC} = 5V, V_{I} = V_{T-}		-0.18		mA	
	Negative-Going Threshold						
I _I	Input Current @ Max	V _{CC} = Max, V _I = 7V				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 4)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			5.9	11	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			8.2	14	mA
	Outputs Low						

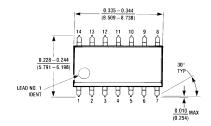

Note 2: $V_{CC} = 5V$

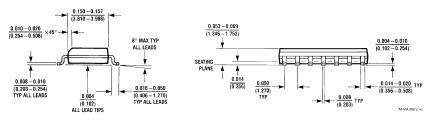

Note 3: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

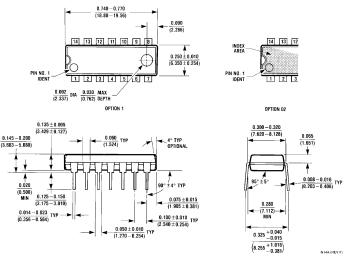

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

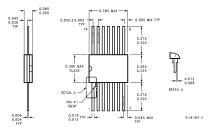

Switching Characteristics at V_{CC} 5V and $T_A = 25^{\circ}C$

Symbol	Parameter	C _L = 15 pF		C _L = 50 pF		Units
		Min	Max	Min	Max]
t _{PLH}	Propagation Delay Time	5	22	8	25	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	5	22	10	33	ns
	High to Low Level Output					






14-Lead Ceramic Dual-In-Line Package (J) Order Number DM54LS132J Package Number J14A



14-Lead Small Outline Molded Package (M) Order Number DM74LS132M Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Molded Dual-In-Line Package (N) Order Number DM74LS132N Package Number N14A

14-Lead Ceramic Flat Package (W) Order Number DM54LS132W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas

Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179