

www.fairchildsemi.com

Function Tables

Reset/Count Function Table							
$\mathbf{R}_{\mathbf{0 1}}$	$\mathbf{R}_{\mathbf{0 2}}$	$\mathbf{R}_{\mathbf{9 1}}$	$\mathbf{R}_{\mathbf{9 2}}$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	X	H	H	H	L	L	H
X	L	X	L		Count		
L	X	L	X		Count		
L	X	X	L		Count		
X	L	L	X		Count		

Absolute Maximum Ratings(Note 1)

```
Voltage at Any Pin (Note 1)
```

Operating Temperature Range (T_{A})
MM74C90, MM74C93
Power Dissipation (P_{D})
Dual-In-Line
Small Outline

Operating V_{CC} Range
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
700 mW
500 mW
3 V to 15 V

Absolute Maximum V_{CC}	18 V
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$	
\quad (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CMOS TO CMOS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \hline 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 9.0 \end{aligned}$			
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\underline{1 / 2(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{1 \times(0)}$	Logical "0" Input Current	$\mathrm{V}_{\text {CC }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
1 Cc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$

$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage MM74C90, MM74C93	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-1.5$		V
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage MM74C90, MM74C93	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8	V
$\mathrm{V}_{\text {OUT(1) }}$	$\begin{aligned} & \text { Logical "1" Output Voltage } \\ & \text { MM74C90, MM74C93 } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$	2.4		V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage MM74C90, MM74C93	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$		0.4	V

OUTPUT DRIVE (See Family Characteristics Data Sheet) (Short Circuit Current)

$I_{\text {SOURCE }}$	Output Source Current (P-Channel)	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.75	-3.3	mA
ISOURCE	Output Source Current (P-Channel)	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-8.0	-15	mA
SINK	Output Sink Current (N-Channel)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8.75	mA	
Output Sink Current (N-Channel)	$\mathrm{V}_{\text {CC }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8.0	16	mA	

AC Electrical Characteristics (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from A_{IN} to Q_{A}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \end{aligned}$		$\begin{gathered} 200 \\ 80 \end{gathered}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from $\mathrm{A}_{\text {IN }}$ to Q_{B} (MM74C93)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 450 \\ & 160 \end{aligned}$	$\begin{aligned} & 850 \\ & 300 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from $A_{\text {IN }}$ to Q_{B} (MM74C90)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 450 \\ & 160 \end{aligned}$	$\begin{aligned} & \hline 800 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from $\mathrm{A}_{\text {IN }}$ to Q_{C} (MM74C93)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{gathered} 1050 \\ 400 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {pdo }}, \mathrm{t}_{\text {pd1 }}$	Propagation Delay Time from $A_{\text {IN }}$ to Q_{C} (MM74C93)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{gathered} 1000 \\ 400 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from $A_{\text {IN }}$ to Q_{D} (MM74C93)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 600 \\ & 250 \end{aligned}$	$\begin{gathered} \hline 1200 \\ 500 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from $\mathrm{A}_{\text {IN }}$ to Q_{D} (MM74C90)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 450 \\ & 160 \end{aligned}$	$\begin{aligned} & \hline 800 \\ & 300 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from R_{01} or R_{02} to Q_{A}, Q_{B}, Q_{C} or Q_{D} (MM74C93)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 75 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from R_{01} or R_{02} to Q_{A}, Q_{B}, Q_{C} or Q_{D} (MM74C90)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 75 \end{gathered}$	$\begin{aligned} & \hline 400 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time from R_{91} or R_{92} to Q_{A} or Q_{D} (MM74C90)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 250 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 500 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PW }}$	Min. R_{01} or R_{02} Pulse Width (MM74C93)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 600 \\ 30 \end{gathered}$	$\begin{aligned} & 250 \\ & 125 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PW }}$	Min. R_{01} or R_{02} Pulse Width (MM74C90)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$	$\begin{aligned} & 250 \\ & 125 \end{aligned}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PW }}$	Min. R_{91} or R_{92} Pulse Width (MM74C90)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 500 \\ & 250 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Clock Rise and Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$			$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$
t_{w}	Minimum Clock Pulse Width	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$f_{\text {max }}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input (Note 3)		5		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	Per Package (Note 4)		45		pF
Note 2: AC Parameters are guaranteed by DC correlated testing. Note 3: Capacitance is guaranteed by periodic testing. Note 4: $\mathrm{C}_{\text {PD }}$ determines the no load ac power consumption of any CMOS device. For complete explanation see Family Characteristics application note-AN-90.						

AC Test Circuits

Clock rise and fall time $t_{r}=t_{f}=20 \mathrm{~ns}$

Clock rise and fall time $t_{r}=t_{f}=20 \mathrm{~ns}$

Switching Time Waveforms

MM74C90 and MM74C93 are solid line waveforms. Dashed line waveforms are for MM74C90 only.

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
